Recent Progress in Microencapsulation of Active Peptides—Wall Material, Preparation, and Application: A Review

Author:

Li Mengjie1,Guo Quanyou2,Lin Yichen3,Bao Hairong1,Miao Song3ORCID

Affiliation:

1. College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China

2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

3. Teagasc Food Research Centre, Moorepark, P61C996 Fermoy, Ireland

Abstract

Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.

Funder

National Key Research and Development Program of China

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Yeast cells-xanthan gum coacervation for hydrosoluble bioactive encapsulation;International Journal of Biological Macromolecules;2023-12

2. Yeast glucan particles: An express train for oral targeted drug delivery systems;International Journal of Biological Macromolecules;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3