Abstract
Fresh-cut leafy vegetables are one of the most perishable products because they readily deteriorate in quality even during cold storage and have a relatively short shelf life. Since these products are in high demand, methods for rigorous quality control and estimation of freshness that are rapid and non-destructive would be highly desirable. The objective of the present research was to develop a rapid, non-destructive near-infrared spectroscopy (NIRS)-based method for the evaluation of changes during cold storage of lettuce using an aquaphotomics approach to monitor the water molecular structure in lettuce leaves. The reference measurements showed that after 6 days of dark, cold storage, the weight and water activity of lettuce leaves decreased and β-carotene decreased, while chlorophylls slightly increased. Aquaphotomics characterization showed large differences in the lettuce leaves’ spectra depending on their growth zone. Difference spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) confirmed the differences in the inner and outer leaves and revealed that spectra change as a function of storage time. Partial least squares regression (PLSR) allowed the prediction of the time spent in storage with a coefficient of determination of R2 = 0.80 and standard error of RMSE = 0.77 days for inner, and R2 = 0.86 and RMSE = 0.66 days for outer leaves, respectively. The following water absorbance bands were found to provide the most information in the spectra: 1348, 1360, 1373, 1385, 1391, 1410, 1416, 1422, 1441, 1447, 1453, 1466, 1472, 1490, 1503, 1515, 1521, 1534 and 1571 nm. They were further used as water matrix coordinates (WAMACs) to define the water spectral patterns (WASPs) of lettuce leaves. The WASPs of leaves served to succinctly describe the state of lettuces during storage. The changes in WASPs during storage reveled moisture loss, damage to cell walls and expulsion of intracellular water, as well as loss of free and weakly hydrogen-bonded water, all leading to a loss of juiciness. The WASPs also showed that damage stimulated the defense mechanisms and production of vitamin C. The leaves at the end of the storage period were characterized by water strongly bound to collapsed structural elements of leaf tissues, mainly cellulose, leading to a loss of firmness that was more pronounced in the outer leaves. All of this information was reflected in the changes of absorbance in the identified WAMACs, showing that the water molecular structure of lettuce leaves accurately reflects the state of the lettuce during storage and that WASPs can be used as a multidimensional biomarker to monitor changes during storage.
Funder
the Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences
the Cooperative Doctoral Programme of the Ministry for Innovation and Technology
the government scholarships from the Office of the Civil Service Commission (OCSC), Thailand
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Reference127 articles.
1. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.);Kim;J. Food Compos. Anal.,2016
2. Nutritional quality of lettuce;Mou;Curr. Nutr. Food Sci.,2012
3. Kashiwagi, A. (2014). Japanese Fresh-Cut Vegetable Market–Recent Changes and Implications, Global Agricultural Information Network.
4. Sinha, N.K., Hui, Y.H., Evranuz, E.O., Siddiq, M., and Ahmed, J. (2011). Handbook of Vegetables and Vegetable Processing, Blackwell Publishing Ltd.
5. Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats;Ismail;BMC Complement. Altern. Med.,2015
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献