Structural and Functional Characteristics of Hemp Protein Isolate–Pullulan Polysaccharide Glycosylation Conjugate in an Aqueous Model System

Author:

Ding Ziwen1,Jiang Fan1,Liu Kun1,Gong Fangshuo1,Liu Yuanfa1,Zheng Zhaojun1,Xu Yong-Jiang1

Affiliation:

1. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China

Abstract

Hemp protein, with its important nutritional and industrial value, has trickled into the aisles of protein demand; however, its poor functional properties have largely limited its implementation in food. Herein, we aimed to modify hemp protein isolate (HPI) via glycosylation coupling with pullulan polysaccharide, and we subsequently characterized its structural and functional properties. The conjugation variables were HPI to pullulan ratio (i.e., 3:1, 2:1, 1:1, 1:2, and 1:3 w/w), incubation temperature (i.e., 50, 60, 70, 80, and 90 °C), and incubation time (i.e., 3, 6, 12, 24, and 48 h). Native HPI was used as a control for comparison purposes. We found that DG tended to decrease when the pullulan to HPI ratio was greater than 1:1 and when the temperature exceeded 80 °C. SDS-PAGE analysis shows that when the DG is increased, wider and heavier molecular weight bands emerge near the top of the running gel, while such observations were absent in the control. Further, glycosylation could loosen the HPI’s secondary and tertiary structures, as well as increase surface hydrophobicity. The solubility of HPI after glycosylation significantly increased (p < 0.05) at pH 7.0 compared to HPI without glycosylation. Emulsifying activity improved significantly (p < 0.05), with glycosylation with HPI–pullulan at a ratio of 1:3 showing maximum emulsifying activity of 118.78 ± 4.48 m2/g (HPI alone: 32.38 ± 3.65 m2/g). Moreover, the HPI–pullulan glycosylation time of 24 h showed maximum foaming activity (23.04 ± 0.95%) compared to HPI alone (14.20 ± 1.23%). The foaming stability of HPI (79.61 ± 3.33%) increased to 97.78 ± 3.85% when HPI–pullulan was conjugated using a glycosylation temperature of 80 °C. Compared with the un-glycated HPI, HPI–pullulan also increased WHC (4.41 ± 0.73 versus 9.59 ± 0.36 g/g) and OHC (8.48 ± 0.51 versus 13.73 ± 0.59 g/g). Intriguingly, correlation analysis showed that protein functional characteristics were significantly and positively correlated with DG. Overall, our findings support the notion that pullulan conjugation provides further functional attributes to the HPI, thereby broadening its potential implementation in complicated food systems.

Funder

Key Research and Development Program of Shandong Province

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3