Reducing the Flocculation of Milk Tea Using Different Stabilizers to Regulate Tea Proteins

Author:

Song Yuqi1,Wang Xiaosen1,Luo Haixi2,Wang Mingyan1,Chen Jian1

Affiliation:

1. Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China

2. Key Laboratory of Medicinal and Edible Plant Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou 571126, China

Abstract

The regulation of flocs derived from polyphenol–protein formation in milk tea has not been fully explored. In this study, the flocculation of milk tea was regulated by adding 10 kinds of stabilizers with different characteristics. The stability coefficient and centrifugal precipitation rate were used as indexes. The optimal concentration ratio of the complex stabilizer was identified using the response surface methodology (RSM), being 0.04% for Arabic gum, 0.02% for β-cyclodextrin and 0.03% for Agar. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the characteristics of different stabilizers in milk tea, and our findings were as follows: (1) The relative strength of the peaks in different stable systems was different. The absorption peaks were mainly near the wave numbers 3376 cm−1, 2928 cm−1, 1655 cm−1, 1542 cm−1, 1408 cm−1, 1047 cm−1 and 925 cm−1. (2) The milk tea system was an amorphous structure. The diffraction peak of the composite system was observed to be about 20°. The crystallinity of the milk tea in the compound group was 33.16%, which was higher than that of the blank group (9.67%). (3) The compound stabilizer reduced flocculation, and the stabilizing agents improved the surface order of milk tea. These results indicate that the combination of polysaccharide stabilizers (Arabic gum and agar) and oligosaccharide stabilizers (β-CD) in certain proportions can regulate the flocculation of milk tea and improve its stability. The potential research avenues involving polyphenol–protein complex instability systems and their applications in food development are expanded by this work.

Funder

National Natural Science Foundation of China

Hainan Province Natural Science Fund Project

Education Department of Hainan Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3