Acid-Mediated Formation of Soybean Isolate Protein Emulsion Gels with Soybean Oil as an Active Component

Author:

Bi Chonghao1,Zhou Tong1,Wu Zeyuan1,Huang Zhigang12

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, No. 11 Fu Cheng Road Haidian District, Beijing 100048, China

2. Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China

Abstract

In this study, the effect of soybean oil concentration on the rheology, water-holding capacity, and thermal stability of acid-mediated soy protein isolate (SPI) emulsion gels was investigated. The microstructure was analyzed and interpreted by CLSM and SEM observations. The results showed that the addition of soybean oil improved the elastic properties of the acid-mediated SPI emulsion gels. The storage modulus increased from 330 Pa (2% soybean oil concentration) to 545 Pa (8% soybean oil concentration) with a significant increase (p < 0.05). The increase in soybean oil concentration resulted in more SPI-coated oil droplets acting as active particles, enhancing the gel network. The acid-mediated SPI emulsion gels became more disordered as the soybean oil concentration increased, with the fractal dimension increasing from 2.92 (2%) to 2.95 (8%). The rheological properties, thermal analysis, and microstructure of 6% SPI gel and acid-mediated SPI emulsion gels with 2% to 8% soybean oil concentration were compared. The acid-mediated SPI emulsion gels with soybean oil as the active filler showed improved gel properties, greater thermal stability, and a homogeneous network structure compared to the acid-mediated SPI emulsion gels.

Funder

National Natural Science Foundation of China

2022 Postgraduate Research Ability Improvement Program BTBU, Beijing Excellent Talent Training Project

Joint Program of Beijing Natural Science Foundation Committee and Beijing Education Committee

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3