Abstract
Weizmannia coagulans is an important potential probiotic with dual characteristics of Bacillus and Lactobacillus. This study describes a novel Weizmannia coagulans PL-W with excellent antibacterial activity isolated from Mongolian traditional cheese, in which safety and probiotic potential were evaluated by complete genome sequencing. The crude bacteriocins of W. coagulans PL-W showed antibacterial activity against various foodborne pathogens, including Listeria monocytogenes CMCC 54,004, Bacillus cereus ATCC 14,579, and Staphylococcus aureus ATCC 25,923. Moreover, the crude bacteriocins have outstanding stability against pH, temperature, surfactants, and are sensitive to protease. The complete genome sequencing revealed W. coagulans PL-W consists of 3,666,052-base pair (bp) circular chromosomes with a GC content of 46.24% and 3485 protein-coding genes. It contains 84 tRNA, 10 23S rRNA, 10 16S rRNA, and 10 5S rRNA. In addition, no risk-related genes such as acquired antibiotic resistance genes, virulence, and pathogenic factors were identified, demonstrating that W. coagulans PL-W is safe to use. Furthermore, the presence of gene clusters involved in bacteriocin synthesis, adhesion-related genes, and genes contributing to acid and bile tolerance indicate that W. coagulans PL-W is a potential candidate probiotic. Thus, antimicrobial activity and genome characterization of W. coagulans PL-W demonstrate that it has extensive potential applications as a food protective culture.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献