Citrinin Exposure Induced Testicular Damage and Spermatogenesis Disorder by Triggering Endoplasmic Reticulum Stress

Author:

Wu Jing12,Wu You12ORCID,Fan Hui12,Yang Chenglin12,Yang Mengran12,Kong Xiangyi12,Ning Can12,Wang Siqi12,Xiao Wenguang12,Wang Naidong13,Yi Jine12,Yuan Zhihang12ORCID

Affiliation:

1. Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China

2. Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha 410128, China

3. Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics, Research Center of Reverse Vaccinology, Changsha 410128, China

Abstract

Damage to the reproductive system is the key factor leading to male infertility. Citrinin (CTN) is produced by Penicillium and Aspergillus in nature, and is definitely found in food and animal feed. Studies have revealed that CTN can cause damage to male reproductive organs and reduce fertility, but the mechanism of toxicity has not been revealed. In the present study, male Kunming mice were given different doses of CTN (0, 1.25, 5 or 20 mg/kg BW) by intragastric administration. The results demonstrated that CTN exposure caused disorder of androgen, a decline in sperm quality, and histopathological damage of testis. The inhibition of the expression of ZO-1, claudin-1 and occludin suggests that the blood-testis barrier (BTB) was damaged. Simultaneously, CTN inhibited the activity of antioxidant enzymes such as CAT and SOD, and promoted the production of MDA and ROS, resulting in oxidative damage of testis. Additionally, apoptotic cells were detected and the ratio of Bax/Bcl-2 was increased. Not only that, CTN activated the expression of endoplasmic reticulum stress (ERS)-related proteins IRE1, ATF6, CHOP, and GRP78. Interestingly, 4-Phenylbutyric Acid (4-PBA, an ERS inhibitor) treatment blocked the adverse effects of CTN exposure on male reproduction. In short, the findings suggested that CTN exposure can cause damage to mouse testis tissue, in which ERS exhibited an important regulatory role.

Funder

Natural Science Foundation of Hunan province

The Special Funds for Construction of Innovative Provinces in Hunan Province

Innovation Research and Development Project of Hunan Development and Reform Commission

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3