Discrepancy of Effective Water Diffusivities Determined from Dynamic Vapor Sorption Measurements with Different Relative Humidity Step Sizes: Observations from Cereal Materials

Author:

Zhao Xuewei12,Wei Xiaoxiao1,Wang Hongwei123,Liu Xingli12,Zhang Yanyan12,Zhang Hua123

Affiliation:

1. College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

2. Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China

3. Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450001, China

Abstract

Water diffusivity, a critical parameter for cereal processing design and quality optimization, is usually concentration-dependent. dynamic vapor sorption (DVS) system provides an approach to establishing the relationship between water concentration and diffusivity. However, the usual relative humidity (RH) jump during practical sorption processes is usually greater than that adopted in DVS measurements. Water vapor sorption kinetics of glutinous rice grains, glutinous rice flour and wheat flour dough films were measured using the DVS system to verify if varying RH step sizes can obtain identical diffusivities within the same range. The effective diffusivities were determined according to Fick’s second law. The results revealed that increasing RH step size led to a higher estimated diffusivity, regardless of whether the water concentration gradient or potential chemical gradient was considered a driving force for water diffusion. This finding was further confirmed by a linear RH scanning DVS measurement. The water concentration-dependent diffusivity obtained from a multi-step DVS measurement, according to Fick’s second law, will overestimate the required time for practical cereal drying or adsorption. Thus, this paradoxical discrepancy needs a new mass transfer mechanism to be explained.

Funder

National Natural Science Foundation of China–Henan Joint Fund

Joint Funds of National Natural Science Foundation of China and Henan Province

Higher Education School Young Backbone Teacher Training Program of Henan Province

ey Research and Development and Promotion Project in Henan Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3