Enhancing the Hydrolysis and Acyl Transfer Activity of Carboxylesterase DLFae4 by a Combinational Mutagenesis and In-Silico Method

Author:

Li Longxiang1ORCID,Ding Liping1,Shao Yuting1,Sun Shengwei1,Wang Mengxi1,Xiang Jiahui1,Zhou Jingjie1,Wu Guojun1,Song Zhe2,Xin Zhihong1ORCID

Affiliation:

1. Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

2. Instrumental Analysis Center of CPU, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China

Abstract

In the present study, a feruloyl esterase DLFae4 identified in our previous research was modified by error-prone PCR and site-directed saturation mutation to enhance the catalytic efficiency and acyltransferase activity further. Five mutants with 6.9–118.9% enhanced catalytic activity toward methyl ferulate (MFA) were characterized under the optimum conditions. Double variant DLFae4-m5 exhibited the highest hydrolytic activity (270.97 U/mg), the Km value decreased by 83.91%, and the Kcat/Km value increased by 6.08-fold toward MFA. Molecular docking indicated that a complex hydrogen bond network in DLFae4-m5 was formed, with four of five bond lengths being shortened compared with DLFae4, which might account for the increase in catalytic activity. Acyl transfer activity assay revealed that the activity of DLFae4 was as high as 1550.796 U/mg and enhanced by 375.49% (5823.172 U/mg) toward 4-nitrophenyl acetate when residue Ala-341 was mutated to glycine (A341G), and the corresponding acyl transfer efficiency was increased by 7.7 times, representing the highest acyltransferase activity to date, and demonstrating that the WGG motif was pivotal for the acyltransferase activity in family VIII carboxylesterases. Further experiments indicated that DLFae4 and variant DLFae4 (A341G) could acylate cyanidin-3-O-glucoside effectively in aqueous solution. Taken together, our study suggested the effectiveness of error-prone PCR and site-directed saturation mutation to increase the specific activity of enzymes and may facilitate the practical application of this critical feruloyl esterase.

Funder

Key Research and Development Program of Jiangsu Province

special funds of agro-product quality safety risk assessment of the Ministry of Agriculture of the People’s Republic of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3