Bifidobacterium animalis A12 and Lactobacillus salivarius M18-6 Alleviate Alcohol Injury by keap1-Nrf2 Pathway and Thioredoxin System

Author:

Zhang Yan1,Ma Jingsheng1,Jing Nanqing1,Zhang Hongxing1,Xie Yuanhong1,Liu Hui1,Shan Xiangfen2,Ren Jianhua3,Jin Junhua1

Affiliation:

1. Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China

2. Key Ningxia Saishang Dairy Co., Ltd., Yinchuan 750299, China

3. Key College of Bioengineering, Beijing Polytechnic, Beijing 100176, China

Abstract

Excessive drinking can significantly damage people’s health and well-being. Although some lactic acid bacterial strains have been previously shown to alleviate the symptoms of alcohol injury, the mechanism underlying these effects remains unclear. The aim of this study was to establish an alcohol injury model and examine the protective effect and mechanism of B. animalis A12 and L. salivarius M18-6. The results showed that A12 freeze-dried powder could maintain the survival rate of mice with alcohol injury at 100%. Compared with Alco group, L. salivarius M18-6 dead cell improved the survival rate of mice, attenuated liver steatosis, and significantly down-regulated serum Alanine transaminase (ALT) level; at the same time, it activated keap1-Nrf2 signaling pathway and up-regulated Superoxide dismutase (SOD), it protects mouse liver cells from oxidative stress induced by alcohol injury. In addition, B. animalis A12 can reduce the stress response to short-term alcohol intake and improve the ability of anti-oxidative stress by upregulating the level of isobutyric acid, reducing the level of keap1 protein in the liver of mice and upregulating the expression of thioredoxin genes (Txnrd1, Txnrd3, Txn1). Taken together, the results showed that B. animalis A12 and L. salivarius M18-6 alleviate alcohol injury in mice through keap1-Nrf2 signaling pathway and thioredoxin system.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference49 articles.

1. Alcoholic liver disease: Pathogenesis and new therapeutic targets;Gao;Gastroenterology,2011

2. Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity;George;Brain Res. Bull.,2017

3. The effect of chronic alcohol abuse on gastric and duodenal mucosa;Bienia;Ann. Univ. Mariae Curie-Sklodowska Sect. D Med.,2002

4. Ethanol exposure decreases cell proliferation and increases apoptosis in rat testes;Koh;J. Vet. Med. Sci.,2006

5. Cytokines and alcoholic liver disease;Mcclain;Semin. Liver Dis.,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3