Exploring the Impact of α-Amylase Enzyme Activity and pH on Flavor Perception of Alcoholic Drinks

Author:

Santos Maria João1ORCID,Correia Elisete2ORCID,Vilela Alice3ORCID

Affiliation:

1. Department of Agronomy, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

2. Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal

3. Chemistry Research Centre (CQ-VR), Department of Agronomy (DAgro), School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

Abstract

The introduction of a drink in the mouth and the action of saliva and enzymes cause the perception of basic tastes and some aromas perceived in a retro-nasal way. Thus, this study aimed to evaluate the influence of the type of alcoholic beverage (beer, wine, and brandy) on lingual lipase and α-amylase activity and in-mouth pH. It was possible to see that the pH values (drink and saliva) differed significantly from the pH values of the initial drinks. Moreover, the α-amylase activity was significantly higher when the panel members tasted a colorless brandy, namely Grappa. Red wine and wood-aged brandy also induced greater α-amylase activity than white wine and blonde beer. Additionally, tawny port wine induced greater α-amylase activity than red wine. The flavor characteristics of red wines due to skin maceration and the contact of the brandy with the wood can cause a synergistic effect between beverages considered “tastier” and the activity of human α-amylase. We can conclude that saliva-beverage chemical interactions may depend on the saliva composition but also on the chemical composition of the beverage, namely its constitution in acids, alcohol concentration, and tannin content. This work is an important contribution to the e-flavor project, the development of a sensor system capable of mimicking the human perception of flavor. Furthermore, a better understanding of saliva–drink interactions allow us to comprehend which and how salivary parameters can contribute to taste and flavor perception.

Funder

FEEI

CQ-VR

CEMAT/IST-ID

“e-Flavor” R&D project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3