Effect of Heat Transfer Medium and Rate on Freezing Characteristics, Color, and Cell Structure of Chestnut Kernels

Author:

Cheng Lina1,Wu Weijun1,Li Jinghao12,Lin Xian1,Wen Jing1,Peng Jian1,Yu Yuanshan1,Zhu Jieli1,Xiao Gengsheng2

Affiliation:

1. Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No.133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China

2. College of Food Science and Technology, Zhongkai University of Agricultural and Engineering, Guangzhou 510631, China

Abstract

This paper compared the effects of air and nitrogen on the freezing characteristics, color, and cell structures of chestnut kernels at different rates of heat transfer and adopted liquid nitrogen spray quick-freezing (NF−40 °C/−60 °C/−80 °C/−100 °C) and still air freezing (AF−20 °C/−40 °C) as the freezing methods. The ratio of heat transfer coefficients in N2 groups was two times as high as those in air groups, and NF−100 °C and NF−80 °C showed better freezing characteristics, good protection for cytoskeletons, and the color was similar to those of the fresh group. Taking both Multivariate Analysis of Variance (Principal Components Analysis and Cluster Analysis) and economic factors, NF−80 °C can be used as a suitable method for chestnut kernel freezing. When the ambient freezing temperature was lower than Tg, both NF and AF treatment groups presented poor quality. The rate and medium of heat transfer jointly influenced the freezing characteristics and quality. The former had a greater effect than the latter, however.

Funder

National Key R&D Program Projects

Guangdong Basic and Applied Foundation Fund

Young Talent Support Project of the Guangzhou Association for Science and Technology

Guangdong Academy of Agricultural Sciences excellent talent introduction

Guangdong Academy of Agricultural Sciences youth mentor

Research Group Construction Project of the Guangdong Academy of Agricultural Sciences

Innovative Research Team Construction Project for Modern Agricultural Industry Common Key Technologies of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3