Metagenomic and Untargeted Metabolomic Analysis of the Effect of Sporisorium reilianum Polysaccharide on Improving Obesity

Author:

Guo Yunlong12,Liu Meihong1,Liu Xin3,Zheng Mingzhu1,Xu Xiuying1,Liu Xiaokang3,Gong Jiyu3,Liu Huimin1,Liu Jingsheng1

Affiliation:

1. National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China

2. Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China

3. College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China

Abstract

Gut microbiota plays an important role in the pathophysiology of obesity. Fungal polysaccharide can improve obesity, but the potential mechanism needs further study. This experiment studied the potential mechanism of polysaccharides from Sporisorium reilianum (SRP) to improve obesity in male Sprague Dawley (SD) rats fed with a high-fat diet (HFD) using metagenomics and untargeted metabolomics. After 8 weeks of SRP (100, 200, and 400 mg/kg/day) intervention, we analyzed the related index of obesity, gut microbiota, and untargeted metabolomics of rats. The obesity and serum lipid levels of rats treated with SRP were reduced, and lipid accumulation in the liver and adipocyte hypertrophy was improved, especially in rats treated with a high dose of SRP. SRP improved the composition and function of gut microbiota in rats fed with a high-fat diet, and decreased the ratio of Firmicutes to Bacteroides at the phylum level. At the genus level, the abundance of Lactobacillus increased and that of Bacteroides decreased. At the species level, the abundance of Lactobacillus crispatus, Lactobacillus helveticus, and Lactobacillus acidophilus increased, while the abundance of Lactobacillus reuteri and Staphylococcus xylosus decreased. The function of gut microbiota mainly regulated lipid metabolism and amino acid metabolism. The untargeted metabolomics indicated that 36 metabolites were related to the anti-obesity effect of SRP. Furthermore, linoleic acid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and the phenylalanine metabolism pathway played a role in improving obesity in those treated with SRP. The study results suggest that SRP significantly alleviated obesity via gut-microbiota-related metabolic pathways, and SRP could be used for the prevention and treatment of obesity.

Funder

National Key Research and Development Program of China

Scientific and Technological Innovation Team Project for the Outstanding Young and Middle-Aged of Jilin Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3