Affiliation:
1. College of Mechanical and Electronical Engineering, Gansu Agricultural University, Lanzhou 730070, China
Abstract
In order to improve the shortcomings of uneven heating of traditional microwave drying and to maximally maintain food quality after harvest, a rotary microwave vacuum drying equipment was fabricated and used for drying experiments on Angelica sinensis to explore the effects of drying temperature, slice thickness, and vacuum degree on drying characteristics, physicochemical quality, and microstructure of dried Angelica sinensis products. The results showed that microwave vacuum drying can significantly shorten the drying time and improved the drying efficiency. Six different mathematical models were investigated and the Midilli model was the best-fitted model for all samples (R2 = 0.99903, Pearson’s r = 0.99952), and drying methods had various effects on different indexes and were confirmed by Pearson’s correlation analysis and principal component analysis. The optimal process parameters for microwave vacuum drying of Angelica sinensis were determined by entropy weight-coefficient of variation method as 45 °C, 4 mm, −0.70 kPa. Under this condition, well preserved of ferulic acid, senkyunolide I, senkyunolide H, ligustilide, total phenols and antioxidant activity, bright color (L* = 77.97 ± 1.89, ΔE = 6.77 ± 2.01), complete internal organizational structure and more regular cell arrangement were obtained in the samples. This study will provide a theoretical reference for the excavation of the potential value and the development of industrial processing of Angelica sinensis.
Funder
National Natural Science Foundation of China
Young Mentor Foundation of Gansu Agricultural University fund
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献