Enhancing Shelf Life Prediction of Fresh Pizza with Regression Models and Low Cost Sensors

Author:

Wunderlich Paul1ORCID,Pauli Daniel2ORCID,Neumaier Michael2ORCID,Wisser Stephanie1ORCID,Danneel Hans-Jürgen2,Lohweg Volker1ORCID,Dörksen Helene1

Affiliation:

1. inIT–Institute Industrial IT, OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany

2. Institute for Life Science Technologies (ILT.NRW), OWL University of Applied Sciences and Arts, 32657 Lemgo, Germany

Abstract

The waste of food presents a challenge for achieving a sustainable world. In Germany alone, over 10 million tonnes of food are discarded annually, with a worldwide total exceeding 1.3 billion tonnes. A significant contributor to this issue are consumers throwing away still edible food due to the expiration of its best-before date. Best-before dates currently include large safety margins, but more precise and cost effective prediction techniques are required. To address this challenge, research was conducted on low-cost sensors and machine learning techniques were developed to predict the spoilage of fresh pizza. The findings indicate that combining a gas sensor, such as volatile organic compounds or carbon dioxide, with a random forest or extreme gradient boosting regressor can accurately predict the day of spoilage. This provides a more accurate and cost-efficient alternative to current best-before date determination methods, reducing food waste, saving resources, and improving food safety by reducing the risk of consumers consuming spoiled food.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference49 articles.

1. United Nations (2015). Transforming Our World: The 2030 Agenda for Sustainable Development, United Nations.

2. Hafner, G., Barabosz, J., Schneider, F., Lebersorger, S., Scherhaufer, S., Schuller, H., Leverenz, D., and Kranert, M. (2023, February 22). Ermittlung der Weggeworfenen Lebensmittelmengen und Vorschläge zur Verminderung der Wegwerfrate bei Lebensmitteln in Deutschland. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/Lebensmittelverschwendung/Studie_Lebensmittelabfaelle_Langfassung.pdf?__blob=publicationFile&v=3.

3. Gustavsson, J., Cederberg, C., and Sonesson, U. (2011, January 16–17). Global Food Losses and Food Waste: Extent, Causes and Prevention. Proceedings of the Study Conducted for the International Congress Save Food, at Interpack 2011, Düsseldorf, Germany.

4. Schmidt, T.G., Schneider, F., Leverenz, D., and Hafner, G. (2019). Food Waste in Germany-Baseline 2015, Johann-Heinrich-von-Thünen-Institut. Thünen-Report.

5. European Union (2023, February 22). Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and(EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02011R1169-20180101.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3