Effects of Culinary Procedures on Concentrations and Bioaccessibility of Cu, Zn, and As in Different Food Ingredients

Author:

Zhang Canchuan12,Miao Xi3,Du Sen1,Zhang Ting1,Chen Lizhao1,Liu Yang1,Zhang Li14ORCID

Affiliation:

1. Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Mathematics, Pennsylvania State University-Harrisburg, Middletown, PA 17057, USA

4. Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China

Abstract

Although cooked diets are the primary sources for humans to absorb trace elements, there is limited data available on the concentrations and bioaccessibility of trace elements in cooked food ingredients. This work aims to evaluate the effects of culinary procedures on the concentrations and bioaccessibility of trace elements in common food ingredients. Twelve food species from the local market were treated with four culinary procedures (boiling, steaming, baking, and frying), then the bioaccessibility of copper (Cu), zinc (Zn), and arsenic (As) were evaluated using the in vitro digestion method. The subcellular distribution of these elements was also determined using the sequential fractionation method. The results show that culinary procedures decreased the retention rate of As during cooking (100% for raw and 65–89% for cooked ingredients) and the bioaccessibility of Cu and Zn during digestion (nearly 75% for raw and 49–65% for cooked ingredients), resulting in a reduction of the total bioaccessible fraction (TBF) of Cu, Zn, and As in food ingredients. The TBF of Cu, Zn, and As in all tested food ingredients followed the order: raw (76–80%) > steaming and baking (50–62%) > boiling and frying (41–50%). The effects of culinary procedures were associated with the subcellular distribution of trace elements. As was dominantly distributed in heat-stable proteins (51–71%), which were more likely to be lost during cooking. In comparison, Cu and Zn were mainly bound to the insoluble fraction and heat-denatured proteins (60–89% and 61–94% for Cu and Zn, respectively), which become less digestible in cooked ingredients. In conclusion, these results suggest that culinary procedures reduce the absorption of Cu, Zn, and As in various food ingredients, which should be considered in the coming studies related to nutrition and risk assessment of trace elements.

Funder

National Key Research and Development Program of China

Hainan Provincial Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Planning Project of Guangdong Province, China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3