The Protective Role of Scorias spongiosa Polysaccharide-Based Microcapsules on Intestinal Barrier Integrity in DSS-Induced Colitis in Mice

Author:

Xu Yingyin123,Feng Huiyu4,Zhang Zhiyuan123,Zhang Qian123,Tang Jie123,Zhou Jie123,Wang Yong123,Peng Weihong123

Affiliation:

1. Sichuan Institute of Edible Fungi, Chengdu 610066, China

2. National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu 610066, China

3. Scientific Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu 610066, China

4. College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

Abstract

Scorias spongiosa, a type of edible fungus, is beneficial for intestinal health. However, the mechanisms by which polysaccharides derived from S. spongiosa contribute to the integrity of the intestinal barrier have been little investigated. In the present study, 40 C57BL/6J mice were assigned into five groups: (1) Normal; (2) Dextran sulfate sodium (DSS)Administration; (3) DSS + Uncapped polysaccharides; (4) DSS + Low microcapsules; (5) DSS + High microcapsules. After one week of administration of S. spongiosa polysaccharides, all mice, excluding the Normal group, had free access to the drinking water of 3.5% DSS for seven days. Serum and feces were then taken for analysis. Scanning electron microscopy analysis indicated the structure of the micro-capped polysaccharides with curcumin was completed with a rough surface, which differs from the uncapped polysaccharides. Noticeably, S. spongiosa polysaccharides enhanced intestinal barrier integrity as evidenced by increasing the protein levels of Claudin-1, ZO-1 and ZO-2. Low-capped polysaccharides mitigated the DSS-induced oxidative stress by increasing catalase (CAT) concentration and decreasing malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations. Besides, DSS treatment caused a disturbance of inflammation and the contents of IL-1β, IL-6, TNF-α and CRP were downregulated and the contents of IL-4, IL-10 and IFN-γ were upregulated by S. spongiosa polysaccharides. Research on the potential mechanisms indicated that S. spongiosa polysaccharides inhibited the DSS-triggered activation of NF-κB signaling. Moreover, the JAK/STAT1 and MAPK pathways were suppressed by S. spongiosa polysaccharides in DSS-challenged mice, with Lcap showing the strongest efficacy. 16S rDNA amplicon sequencing revealed that the richness and diversity of the microbial community were reshaped by S. spongiosa polysaccharide ingestion. Therefore, our study substantiated that S. spongiosa polysaccharides exhibited protective effects against colitis mice by reshaping the intestinal microbiome and maintaining the balance of intestinal barrier integrity, antioxidant capacity and colonic inflammation through regulation of the NF-κB–STAT1–MAPK axis.

Funder

“1 + 9” Leading Key Scientific and Technological Research Tasks of Sichuan Academy of Agricultural Sciences

National Modern Agricultural Industrial Technology System of the Ministry of Finance and Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3