Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways

Author:

Zhong Shuyuan1,Li Jingfang1,Wei Meng1,Deng Zeyuan1,Liu Xiaoru1ORCID

Affiliation:

1. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

Abstract

Browning of fresh-cut plants is mainly attributed to the enzymatic browning of phenolic compounds induced by polyphenol oxidase (PPO), producing browning products such as anthraquinones, flavanol oxides, and glycosides, which are usually considered to be non-toxic. Could browning bring any benefits on behalf of their bioactivity? Our previous study found that browned lotus root extracts (BLREs) could reduce the cholesterol level in obese mice as fresh lotus root extracts (FLREs) did. This study aimed to compare the mechanisms of FLRE and BLRE on cholesterol metabolism and verify whether the main component’s monomer regulates cholesterol metabolism like the extracts do through in vitro experiments. Extracts and monomeric compounds are applied to HepG2 cells induced by free fatty acids (FFA). Extracellular total cholesterol (TC) and triglyceride (TG) levels were also detected. In addition, RT-PCR and Western blot were used to observe cholesterol metabolism-related gene and protein expression. The in vitro results showed that BLRE and FLRE could reduce TC and TG levels in HepG2 cells. In addition, BLRE suppressed the synthesis of cholesterol. Meanwhile, FLRE promoted the synthesis of bile acid (BA) as well as the clearance and efflux of cholesterol. Furthermore, the main monomers of BLRE also decreased cholesterol synthesis, which is the same as BLRE. In addition, the main monomers of FLRE promoted the synthesis of BAs, similar to FLRE. BLRE and FLRE promote cholesterol metabolism by different pathways.

Funder

National Natural Science Foundation of China

Central Government Guide Local Special Fund Project for Scientific and Technological Development of Jiangxi Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3