The Accumulation and Biosynthesis of Anthocyanin in Black, White, and Yellow Waxy Corns (Zea mays L. sinensis kulesh) during Kernel Maturation

Author:

Hu Xiaodan123ORCID,Liu Jianhua1,Shan Qiji2,Bai Song3,Li Wu1,Wen Tianxiang1,Guo Xinbo2ORCID,Hu Jianguang1

Affiliation:

1. Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

2. School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China

3. Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

Waxy corn kernels with different colors have high phenolic content and good application potential in medicine and food healthcare. In our work, the content changes of phenolic and anthocyanins profiles were related to genes in the anthocyanin biosynthesis pathway, and the antioxidant activities of three different colors of waxy corn kernels (black, white, and yellow) were determined during kernel development. Results showed that growing temperature and light intensity could affect the accumulation of phytochemicals and antioxidant activities in waxy corns during maturation. Phenolic and antioxidant activities decreased over kernel maturation, and spring had higher nutrition levels during the best harvest time (20 and 25 days after pollination in the spring and autumn, respectively) for waxy corns. Cyanidin-3-O-glucoside and pelargonidin-3-O-glucoside were the main anthocyanins detected in the black waxy corns. The contents of cyanidin are higher than pelargonidin followed by peonidin in the autumn, while on the other hand, pelargonidin had a slightly higher content compared to cyanidin in the spring. DFR, CF1, and ANS were the key genes affecting anthocyanin accumulation. This work provided information on the best harvest time for the pigment of waxy corn in order to achieve relatively high phenolic profiles and antioxidant activities. It also illustrated the possible relationship between weather conditions, gene expression levels, and phenolic content during kernel development.

Funder

Food Nutrition and Health Research Center at the Guangdong Academy of Agricultural Sciences

China Maize Research System

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3