Virtual Screening of Soybean Protein Isolate-Binding Phytochemicals and Interaction Characterization

Author:

Liu Panhang,Wu Annan,Song Yi,Zhao JingORCID

Abstract

Soybean protein isolate (SPI) and small molecule interactions have drawn more and more attention regarding their benefits for both parts, while research on large-scale investigations and comparisons of different compounds is absent. In this study, a high throughput virtual screening was applied on a phytochemical database with 1130 compounds to pinpoint the potential SPI binder. Pentagalloylglucose, narcissoside, poliumoside, isoginkgetin, and avicurin were selected as the top-five ranking molecules for further validation. Fluorescence quenching assays illustrated that isoginkgetin has a significantly higher apparent binding constant (Ka) of (0.060 ± 0.020) × 106 L·mol−1, followed by avicularin ((0.058 ± 0.010) × 106 L·mol−1), pentagalloylglucose ((0.049 ± 0.010) × 106 L·mol−1), narcissoside ((0.0013 ± 0.0004) × 106 L·mol−1), and poliumoside ((0.0012 ± 0.0006) × 106 L·mol−1). Interface characterization by MD simulation showed that protein residues E172, H173, G202, and V204 are highly involved in hydrogen bonding with the two carbonyl oxygens of isoginketin, which could be the crucial events in SPI binding. Van der Waals force was identified as the major driven force for isoginketin binding. Our study explored SPI–phytochemical interaction through multiple strategies, revealing the molecular binding details of isoginkgetin as a novel SPI binder, which has important implications for the utilization of the SPI–phytochemical complex in food applications.

Funder

China Association for Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3