Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning

Author:

Xu PengORCID,Sun Wenbin,Xu Kang,Zhang Yunpeng,Tan Qian,Qing Yiren,Yang Ranbing

Abstract

Seed quality affects crop yield and the quality of agricultural products, and traditional identification methods are time-consuming, complex, and irreversibly destructive. This study aims to establish a fast, non-destructive, and effective approach for defect detection in maize seeds based on hyperspectral imaging (HSI) technology combined with deep learning. Raw spectra collected from maize seeds (200 each healthy and worm-eaten) were pre-processed using detrending (DE) and multiple scattering correction (MSC) to highlight the spectral differences between samples. A convolutional neural network architecture (CNN-FES) based on a feature selection mechanism was proposed according to the importance of wavelength in the target classification task. The results show that the subset of 24 feature wavelengths selected by the proposed CNN-FES can capture important feature information in the spectral data more effectively than the conventional successive projections algorithm (SPA) and competitive adaptive reweighted sampling (CARS) algorithms. In addition, a convolutional neural network architecture (CNN-ATM) based on an attentional classification mechanism was designed for one-dimensional spectral data classification and compared with three commonly used machine learning methods, linear discriminant analysis (LDA), random forest (RF), and support vector machine (SVM). The results show that the classification performance of the designed CNN-ATM on the full wavelength does not differ much from the above three methods, and the classification accuracy is above 90% on both the training and test sets. Meanwhile, the accuracy, sensitivity, and specificity of CNN-ATM based on feature wavelength modeling can reach up to 97.50%, 98.28%, and 96.77% at the highest, respectively. The study shows that hyperspectral imaging-based defect detection of maize seed is feasible and effective, and the proposed method has great potential for the processing and analysis of complex hyperspectral data.

Funder

National Talent Foundation Project of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3