Fe3O4@Granite: A Novel Magnetic Adsorbent for Dye Adsorption

Author:

Topal Canbaz Gamze1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas 58140, Turkey

Abstract

Magnetic granite (MG), a new and low-cost adsorbent, was prepared by the chemical co-precipitation of Fe2+ and Fe3+ using granite (G), which is a magmatic rock type. The adsorption of the Reactive Black 5 (RB5) dye from aqueous solutions on Fe3O4-modified granite was examined in a batch system. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), N2 adsorption–desorption, vibrating-sample magnetometry (VSM), and point-of-zero charge (pHpzc) analysis were used to characterize the prepared MG. Magnetic granite displayed significant magnetization and could be easily separated using external magnets. The maximum adsorption capacity was 29.85 mg/g at 298 K. According to kinetic and isothermal examinations, the pseudo-second-order model and Langmuir isothermal adsorption were the best fit for adsorption. It was found that the enthalpy change ΔH (kJ/mol) was −31.76, and the entropy change ΔS (kJ/mol) was 0.096 for a temperature change of 298–330 K. The ΔG° (kJ/mol) value was negative at all temperatures (298 K, −2.86 kJ/mol; 303 K, −2.85 kJ/mol and 313 K, −1.50 kJ/mol), indicating that the adsorption of RB5 on MG was spontaneous.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3