Judgment Basis and Mechanical Analysis of Current Collector Failure in the Winding Process of a Lithium-Ion Battery

Author:

Zhang Yuxin1,Zhao Chunhui1,Du Xiaozhong12,Zhao Jianjun1,Hu Yijian1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. School of Energy and Materials Engineering, Taiyuan University of Science and Technology, Jincheng 048000, China

Abstract

The winding process is one of the essential processes in the manufacturing of lithium-ion batteries (LIBs). Current collector failure frequently occurs in the winding process, which severely increases the production cost and reduces production efficiency. In order to solve this problem, we first analyze the relationship between different process parameters and the failure of the current collector, and put forward the standard to determine the failure of the current collector. Moreover, we conducted tensile experiments to validate the differences in the mechanical performance of the current collector under different thicknesses. Finally, the circumferential stress and strain of the current collector winding were calculated using finite element analysis. The accuracy of the proposed criterion for determining current collector failure was verified through experimental measurements of stress and strain. The results demonstrate that the criterion proposed in this study can accurately calculate the maximum stress during the current collector winding process, providing a powerful tool for addressing the issue of current collector failure in the winding process.

Funder

Natural Science Foundation of Shanxi Province

Shanxi Scholarship Council of China

Postgraduate Education Innovation Project in Shanxi Province of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3