Photo-Programmable Processes in Bithiophene–Azobenzene Monolayers on Gold Probed via Simulations

Author:

Savchenko Vladyslav1,Hadjab Moufdi2,Pavlov Alexander S.3,Guskova Olga14ORCID

Affiliation:

1. Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany

2. Electronics Department, Faculty of Technology, Mohamed Boudiaf University of M’sila, M’sila 28000, Algeria

3. Faculty of Chemistry and Technology, Tver State University, 170100 Tver, Russia

4. Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany

Abstract

In this study, we investigate the structural changes, electronic properties, and charge redistribution within azo-bithiophene (Azo-BT)-chemisorbed monolayers under different light stimuli using the density functional theory and molecular dynamics simulations. We consider two types of switches, Azo-BT and BT-Azo, with different arrangements of the Azo and BT blocks counting from the anchor thiol group. The chemisorbed monolayers of pure cis- and trans-isomers with a surface concentration of approximately 2.7 molecules per nm2 are modeled on a gold surface using the classical all-atom molecular dynamics. Our results reveal a significant shrinkage of the BT-Azo layer under UV illumination, whereas the thicknesses of the Azo-BT layer remain comparable for both isomers. This difference in behavior is attributed to the ordering of the trans-molecules in the layers, which is more pronounced for Azo-BT, leading to a narrow distribution of the inclination angle to the gold surface. Conversely, both layers consisting of cis-switches exhibit disorder, resulting in similar brush heights. To study charge transfer within the immobilized layers, we analyze each snapshot of the layer and calculate the mean charge transfer integrals using Nelsen’s algorithm for a number of interacting neighboring molecules. Combining these integrals with reorganization energies defined for the isolated molecules, we evaluate the charge transfer rates and mobilities for electron and hole hopping within the layers at room temperature based on Marcus’ theory. This research offers new perspectives for the innovative design of electrode surface modifications and provides insights into controlling charge transfer within immobilized layers using light triggers. Additionally, we identify molecular properties that are enhanced via specific molecular design, which contributes to the development of more efficient molecular switches for various electronic applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3