The Influence of Oxidizing and Non-Oxidizing Biocides on Enzymatic and Microbial Activity in Sugarcane Processing

Author:

Terrell Evan1ORCID,Qi Yunci1ORCID,Bruni Gillian O.1ORCID,Heck Emily1

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, New Orleans, LA 70124, USA

Abstract

Processing aids are utilized during raw sugar manufacturing at sugarcane processing facilities to mitigate unwanted contamination from microorganisms and their associated exopolysaccharides (EPS). Microorganisms in processing facilities contribute to sugar losses through sucrose inversion and consumption, with many bacteria strains subsequently producing dextran and fructan EPS that can cause downstream issues related to viscosity and crystallization. Similar issues also result from the presence of unwanted starches from plant material in cane juices. Processing aids include biocides for bacterial inhibition, and enzymes (e.g., dextranase, amylase) to break down polysaccharides in juices. However, oxidizing biocide processing aids (e.g., sodium hypochlorite) may inhibit enzymatic processing aid activity. In this study, biocides (sodium hypochlorite, carbamate, and hop extract) and enzymes (dextranase and amylase) were simultaneously added to sugarcane juice to measure residual enzymatic activity for dextranase and amylase. The same biocides were also tested to estimate minimum inhibitory concentrations against bacterial strains isolated from Louisiana sugarcane processing facilities. These experiments provide evidence to suggest that sodium hypochlorite may interfere with enzymatic processing aid activity, with lesser/limited enzymatic inhibition from carbamates and hop extracts. Biocide susceptibility assays suggest that sodium hypochlorite has limited effectiveness against tested bacterial strains. Hop extract biocide was only effective against Gram-positive Leuconostoc while carbamate biocide showed more broad-spectrum activity against all tested strains.

Funder

U.S. Department of Agriculture (USDA), Agricultural Research Service

American Sugar Cane League

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3