Experimental Investigation of the Relationship of Failure Mode and Energy Dissipation in Grouted Rockbolt Systems under Pullout Load

Author:

Yu Shuisheng1ORCID,Wang Yawei1ORCID,Yang Honghao1ORCID,Lu Shucan1ORCID

Affiliation:

1. School of Architectural Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

Abstract

In underground engineering, the deformation of surrounding rock caused by “three heights and one disturbance” leads to the failure of grouted rockbolt systems, which causes huge economic losses to the mining industry. The research shows that the failure process of grouted rockbolt systems is the result of energy accumulation and release, but the relationship between failure mode and energy dissipation is rarely studied. Based on this, the load transfer behavior, energy dissipation, failure mode and failure mechanism of the grouted rockbolt systems are investigated from the perspective of energy in this study using the indoor pullout test. Test results show that the load decreases rapidly, and the absorbed energy decreases due to the whole-body splitting crack. The absorbed energy of the specimen in the splitting crack mode is lower than that in the pullout failure mode. When the pullout load reaches its peak, the pullout load of the specimen with split failure mode decreases sharply. Meanwhile, the load of the specimen with pullout failure mode is relatively slow, and the energy absorption rate decreases gradually due to the occurrence of cracks. However, the reduction in the energy absorption rate under pullout failure is lower than that under split failure. The radial pressure in the grouted rockbolt systems increases due to the wedge action. When the radial pressure exceeds the tensile strength of concrete, the specimen will experience split failure, otherwise pullout failure will occur.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3