Novel Fractional Order and Stochastic Formulations for the Precise Prediction of Commercial Photovoltaic Curves

Author:

Omar Othman A. M.1ORCID,Badr Ahmed O.2ORCID,Diaaeldin Ibrahim Mohamed1ORCID

Affiliation:

1. Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

2. Electric Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

Abstract

To effectively represent photovoltaic (PV) modules while considering their dependency on changing environmental conditions, three novel mathematical and empirical formulations are proposed in this study to model PV curves with minimum effort and short timing. The three approaches rely on distinct mathematical techniques and definitions to formulate PV curves using function representations. We develop our models through fractional derivatives and stochastic white noise. The first empirical model is proposed using a fractional regression tool driven by the Liouville-Caputo fractional derivative and then implemented by the Mittag-Leffler function representation. Further, the fractional-order stochastic ordinary differential equation (ODE) tool is employed to generate two effective generic models. In this work, multiple commercial PV modules are modeled using the proposed fractional and stochastic formulations. Using the experimental data of the studied PV panels at different climatic conditions, we evaluate the proposed models’ accuracy using two effective statistical indices: the root mean squares error (RMSE) and the determination coefficient (R2). Finally, the proposed approaches are compared to several integer-order models in the literature where the proposed models’ precisely follow the real PV curves with a higher R2 and lower RMSE values at different irradiance levels lower than 800 w/m2, and module temperature levels higher than 50 °C.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3