The Effect of Asynchronous Grouting Pressure Distribution on Ultra-Large-Diameter Shield Tunnel Segmental Response

Author:

Wang Chen1,Song Ming23,Zhu Min1,Chen Xiangsheng1ORCID,Bao Xiaohua1ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China

2. China Communications Construction Company Second Highway Consultant Co., Ltd., Wuhan 430056, China

3. Research and Development Center on Tunnel and Underground Space Technology, China Communications Construction Company, Wuhan 430056, China

Abstract

The complex distribution of synchronous grouting pressure results in excessive tunnel deformation and various structural diseases, especially for ultra-large-diameter shield tunnels. In this study, to reduce the risk of tunnel failure, a three-dimensional refined finite element model was established for the Wuhan Lianghu highway tunnel project, taking into account the non-uniform distribution of synchronous grouting pressure. This study focuses on investigating the development patterns of internal forces, deformations, and damages in segment structures under varying grouting pressure ratios. The results indicate that the primary failure mode of a segment is tensile failure occurring at the outer edge of the arch. Moreover, an increased ratio of grouting pressure between the arch bottom and top leads to a higher positive bending moment value and greater tensile damage at the arch waist. The tunnel ring gradually exhibits distinct “horizontal duck egg” shape deformation. When the grouting pressure ratio is 2.8, there is a risk of tensile cracking at the outer edge of the arch waist. At this time, the segment convergence deformation is 39.71 mm, and the overall floating amount reaches 43.12 mm. This research offers engineering reference for the prediction of internal forces and deformations in ultra-large-diameter shield tunnels during grouting construction, thereby facilitating their application in the development of resilient cities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3