Transient Convective Heat Transfer in Porous Media

Author:

D’Rose Ruben1,Willemsz Mark1,Smeulders David1

Affiliation:

1. Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In this study, several methods to analyze convective heat transfer in a porous medium are presented and discussed. First, the method of Fourier was used to obtain solutions for reduced temperatures θs and θf. The results showed an exponentially decaying propagating temperature front. Then, we discuss the method of integration that was presented earlier by Schumann. This method makes use of a transformation of variables. Thirdly, the system of partial differential equations was directly solved with the Finite Difference method, of which the result showed good agreement with the Fourier solutions. For the chosen Δτ and Δξ, the maximum error for θf=3.7%. The maximum error for θs for the first ξ and first τ is large (36%) but decays rapidly. The problem was extended by adding a linear heat source term to the solid. Again, making use of the change in variables, analytical solutions were derived for the solid and fluid phases, and corrections to the previous literature were suggested. Finally, results obtained from a numerical model were compared to the analytical solutions, which again showed good agreement (maximum error of 6%).

Funder

Netherlands Research Council

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3