General Image Manipulation Detection Using Feature Engineering and a Deep Feed-Forward Neural Network

Author:

Ahmed Sajjad1ORCID,Yoon Byungun2,Sharma Sparsh3,Singh Saurabh4ORCID,Islam Saiful5

Affiliation:

1. School of Computer Science Engineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore 466114, Madhya Pradesh, India

2. Department of Industrial & System Engineering, Dongguk University, Seoul 04620, Republic of Korea

3. Department of Computer Science Engineering, National Institute of Technology Srinagar, Srinagar 190001, Jammu and Kashmir, India

4. Department of AI and Big Data, Woosong University, Seoul 34606, Republic of Korea

5. Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

Abstract

Within digital forensics, a notable emphasis is placed on the detection of the application of fundamental image-editing operators, including but not limited to median filters, average filters, contrast enhancement, resampling, and various other operations closely associated with these techniques. When conducting a historical analysis of an image that has potentially undergone various modifications in the past, it is a logical initial approach to search for alterations made by fundamental operators. This paper presents the development of a deep-learning-based system designed for the purpose of detecting fundamental manipulation operations. The research involved training a multilayer perceptron using a feature set of 36 dimensions derived from the gray-level co-occurrence matrix, gray-level run-length matrix, and normalized streak area. The system detected median filtering, mean filtering, the introduction of additive white Gaussian noise, and the application of JPEG compression in digital Images. Our system, which utilizes a multilayer perceptron trained with a 36-feature set, achieved an accuracy of 99.46% and outperformed state-of-the-art deep-learning-based solutions, which achieved an accuracy of 97.89%.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3