On Predictive Planning and Counterfactual Learning in Active Inference

Author:

Paul Aswin123ORCID,Isomura Takuya4ORCID,Razi Adeel156ORCID

Affiliation:

1. Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton 3800, Australia

2. IITB-Monash Research Academy, Mumbai 400076, India

3. Department of Electrical Engineering, IIT Bombay, Mumbai 400076 , India

4. Brain Intelligence Theory Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan

5. Wellcome Trust Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK

6. CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON M5G 1M1, Canada

Abstract

Given the rapid advancement of artificial intelligence, understanding the foundations of intelligent behaviour is increasingly important. Active inference, regarded as a general theory of behaviour, offers a principled approach to probing the basis of sophistication in planning and decision-making. This paper examines two decision-making schemes in active inference based on “planning” and “learning from experience”. Furthermore, we also introduce a mixed model that navigates the data complexity trade-off between these strategies, leveraging the strengths of both to facilitate balanced decision-making. We evaluate our proposed model in a challenging grid-world scenario that requires adaptability from the agent. Additionally, our model provides the opportunity to analyse the evolution of various parameters, offering valuable insights and contributing to an explainable framework for intelligent decision-making.

Funder

IITB-Monash Research Academy, Mumbai

Department of Biotechnology, Government of India

Japan Society for the Promotion of Science (JSPS) KAKENHI

Japan Science and Technology Agency (JST) CREST

Australian Research Council

Australian National Health and Medical Research Council Investigator Grant

The Wellcome Centre for Human Neuroimaging

Publisher

MDPI AG

Reference36 articles.

1. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Introduction, The MIT Press. [2nd ed.].

2. The free-energy principle: A unified brain theory?;Friston;Nat. Rev. Neurosci.,2010

3. Active inference on discrete state-spaces: A synthesis;Parr;J. Math. Psychol.,2020

4. Active Inference: Demystified and Compared;Sajid;Neural Comput.,2021

5. Millidge, B., Tschantz, A., and Buckley, C.L. (2020). Whence the Expected Free Energy?. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3