VTG-GPT: Tuning-Free Zero-Shot Video Temporal Grounding with GPT

Author:

Xu Yifang1ORCID,Sun Yunzhuo2,Xie Zien1,Zhai Benxiang1,Du Sidan1

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China

2. School of Physics and Electronics, Hubei Normal University, Huangshi 435002, China

Abstract

Video temporal grounding (VTG) aims to locate specific temporal segments from an untrimmed video based on a linguistic query. Most existing VTG models are trained on extensive annotated video-text pairs, a process that not only introduces human biases from the queries but also incurs significant computational costs. To tackle these challenges, we propose VTG-GPT, a GPT-based method for zero-shot VTG without training or fine-tuning. To reduce prejudice in the original query, we employ Baichuan2 to generate debiased queries. To lessen redundant information in videos, we apply MiniGPT-v2 to transform visual content into more precise captions. Finally, we devise the proposal generator and post-processing to produce accurate segments from debiased queries and image captions. Extensive experiments demonstrate that VTG-GPT significantly outperforms SOTA methods in zero-shot settings and surpasses unsupervised approaches. More notably, it achieves competitive performance comparable to supervised methods. The code is available on GitHub.

Publisher

MDPI AG

Reference48 articles.

1. Detecting Moments and Highlights in Videos via Natural Language Queries;Lei;NeurIPS,2021

2. Diwan, A., Peng, P., and Mooney, R. (2023). Transfer Learning for Natural Language Processing Workshop, PMLR.

3. (2023, December 01). Introducing ChatGPT. Available online: https://openai.com/blog/chatgpt.

4. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., and Bhosale, S. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv.

5. Yang, A., Xiao, B., Wang, B., Zhang, B., Bian, C., Yin, C., Lv, C., Pan, D., Wang, D., and Yan, D. (2023). Baichuan 2: Open Large-scale Language Models. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MH-DETR: Video Moment and Highlight Detection with Cross-modal Transformer;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3