Damage Characteristics and Dynamic Response of RC Shells Subjected to Underwater Shock Wave

Author:

Lin Fantong1,Zhou Xianxiang1,Zhao Jian1,Xiao Lan1,Tang Lubo2,Liu Ziye1,Wang Jianshuai1

Affiliation:

1. Defense Engineering Institute, AMS, PLA, Beijing 100850, China

2. School of Civil Engineering, Central South University, Changsha 410083, China

Abstract

Underwater bottom-sitting shell structures face threats from underwater explosion shock waves. To investigate the damage characteristics and dynamic response of bottom-sitting shell structures under underwater explosion shock waves, three-dimensional numerical models of semi-spherical and semi-cylindrical bottom-sitting reinforced concrete (RC) shells under underwater shock waves were established based on the Arbitrary Lagrangian–Eulerian (ALE) algorithm using LS-DYNA software. The influences of the shock wave transmission medium, explosive equivalent, explosive distance, hydrostatic pressure, and reinforcement on the damage characteristics and dynamic response of semi-spherical and semi-cylindrical bottom-sitting RC shell structures were studied. The results indicated that the damage and center vertical deformation of RC shells under underwater shock waves are significantly greater than those under air shock waves. With an increase in explosive equivalent or decrease in explosive distance, the damage and center vertical deformation of RC shells are increased. The damage to the inner surface of RC shells is more severe than the outer surface. The damage and center vertical deformation of RC shells can be reduced by bottom reinforcement and an increase in the diameter of the steel bar. The ‘hoop effect’ caused by hydrostatic pressure restrains the horizontal convex deformation and slightly decreases the macroscopic damage and vertical center deformation of the semi-spherical RC shell with an increase in hydrostatic pressure within the range of 0–2.0092 MPa. The hydrostatic pressure restrains the horizontal convex deformation of the semi-cylindrical RC shell. However, inward concave deformation of the shell center is increased by hydrostatic pressure, inducing an increase in the damage to and center vertical deformation of the semi-cylindrical RC shell. These findings may offer a reference for the construction and design of protective measures for underwater bottom-sitting shell structures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3