Adsorption Kinetics and Mechanism of Pb(II) and Cd(II) Adsorption in Water through Oxidized Multiwalled Carbon Nanotubes

Author:

Li Xin1,Cui Yating1,Du Wanting1,Cui Weiheng1,Huo Lijuan1,Liu Hongfang1

Affiliation:

1. College of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China

Abstract

Toxic heavy metals are ubiquitous in the aquatic environment and show a significant danger to human health. Carbon nanotubes have been extensively used in treating the contamination of groundwater due to their porous multi-layer nature. Batch tests revealed that oxidized multiwalled carbon nanotubes (O-MWCNTS) offer better removal of Pb(II). The removal rate of Pb(II) was 90.15% at pH 6 within 24 h, which was ~58% more than that of Cd(II). The removal rate decreased to 55.59% for Pb(II) and to 16.68% for Cd(II) when the initial concentration of Pb(II)/Cd(II) ranged from 5 to 15 mg·g−1. The removal rate in the competitive tests was about 60.46% for Pb(II) and 9.70% for Cd(II). The Langmuir model offered better description of the adsorptive data for both ions. And the Qm of Pb(II) was 5.73 mg·g−1, which was 2.39 mg·g−1 more than that of Cd(II) in a single-icon system, while Qm was 7.11 mg·g−1 with Pb(II) and 0.78 mg·g−1 with Cd(II) in competitive water. And thermodynamic tests further indicated that the activating energy of Pb(II) and Cd(II) was 83.68 and 172.88 kJ·mol−1, respectively. Lead and cadmium adsorbed on the surface of O-MWCNTS are antagonistic in the competitive system. Based on XPS analyses, it was concluded that the absorbed lead/cadmium species on O-MWCNTS were (-COO)2Pb, (-COO)Pb(-O)/(-COO)2Cd, and (-COO)Cd(-O). Additionally, they offered theoretical evidence supporting the practicality of using nanocomposite membranes as a means to remove cadmium and lead.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3