Electro-Magnetic and Stress Analysis of a −400 T2/m High-Field Gradient Magnet with a Room-Temperature Bore Size of 200 mm

Author:

Wang Yichao12ORCID,Gao Peng1,Luo Xuan1,Han Houxiang1ORCID

Affiliation:

1. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

High-field-strength gradient superconducting magnets have been widely used in many fields. With advancements in technology, the demand for large-aperture magnets is gradually increasing, but there is relatively little research on the design and stress–strain of large-aperture gradient magnets. This article presents the design and analysis of a superconducting magnet characterized by a high field strength of 10 T, a strong gradient of −400 T2/m, and a large room-temperature bore of 200 mm. The aim of this project is to establish an experimental setup for the growth of Ga1−xInxSb crystals. The study starts with an overview of the development process and applied research related to strong-gradient magnets. The study employs a magneto–electric force coupling method based on generalized stretching to theoretically optimize the gradient coil pre-stress parameters through orthogonalization parameter scanning. In addition, an analysis of the stress distribution in both the magnet coil and the mandrel is carried out. The results indicate that the stress and strain values for both the gradient coils and the frame are within the allowable range of their respective materials. The magnets can be designed to operate stably in theory. This article may provide a reference for designers in related fields in optimizing the design and stress–strain analysis of large, strong-gradient magnets.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3