High-Quality Cutting of Soda–Lime Glass with Bessel Beam Picosecond Laser: Optimization of Processing Point Spacing, Incident Power, and Burst Mode

Author:

Liu Jiaxuan12,Yang Jianjun12ORCID,Chen Hui3,Li Jinxuan1,Zhang Decheng3,Zhong Jian2,Pan Xinjian1

Affiliation:

1. College of Electron and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China

2. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

3. South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China

Abstract

Soda–lime glass has a wide range of applications in the fields of smart electronics, optical components, and precision originals. In order to investigate the effect of processing parameters on picosecond Bessel laser cutting of soda–lime glass and to achieve high-quality soda–lime glass cutting, a series of cutting experiments were conducted in this study. In this study, it was found that the machining point spacing, the incident laser energy, and the number of burst modes had a significant effect on the machining of the samples. The atomic force microscope (AFM) showed a better quality of roughness of the machined cross-section when the spacing of the machining points was 1 μm, a locally optimal solution was obtained when the number of burst modes was 2, and a locally optimal solution was also obtained when the incident laser power was 11.5 W. In this study, better machining quality was achieved for soda–lime glass of 1 mm thickness, with an average roughness of 158 nm and a local optimum of 141 nm.

Funder

National Key R&D Program of China

Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Provincial Department of Education Key Fields Special Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3