FedDeep: A Federated Deep Learning Network for Edge Assisted Multi-Urban PM2.5 Forecasting

Author:

Hu Yue12,Cao Ning1,Guo Wangyong2,Chen Meng3,Rong Yi1,Lu Hao1

Affiliation:

1. College of Computer and Software, Hohai University, Nanjing 210024, China

2. NARI Technology Co., Ltd., Nanjing 210047, China

3. Shenzhen Urban Transport Planning Center Co., Ltd., Shenzhen 518000, China

Abstract

Accurate urban PM2.5 forecasting serves a crucial function in air pollution warning and human health monitoring. Recently, deep learning techniques have been widely employed for urban PM2.5 forecasting. Unfortunately, two problems exist: (1) Most techniques are focused on training and prediction on a central cloud. As the number of monitoring sites grows and the data explodes, handling a large amount of data on the central cloud can cause tremendous computational pressures and increase the risk of data leakages. (2) Existing methods lack an adaptive layer to capture the varying impacts of different external factors (e.g., weather conditions, temperature, and wind speed). In this paper, a federated deep learning network (FedDeep) is developed for edge-assisted multi-urban PM2.5 forecasting. First, we assign each urban region to an edge cloud server (ECS). An external spatio-temporal network (ESTNet) is then deployed on each ECS. Data from different urban regions are uploaded to the corresponding ECS for training, which avoids processing all the data on the central cloud and effectively alleviates computational pressure and data leakage issues. Second, in ESTNet, we develop a gating fusion layer to adaptively fuse external factors to improve prediction accuracy. Finally, we adopted PM2.5 data collected from air quality monitoring sites in 13 prefecture-level cities, Jiangsu Province for validation. The experimental results proved that FedDeep outperformed the advanced baselines in terms of prediction accuracy and model efficiency.

Funder

National Natural Science Foundation of China

Research on Distribution Room Condition Sensing Early Warning and Distribution Cable Operation and Inspection Smart Decision Making Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3