Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery

Author:

Fayaz Muhammad1ORCID,Nam Junyoung1,Dang L. Minh2,Song Hyoung-Kyu2ORCID,Moon Hyeonjoon1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Information and Communication Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

Abstract

Land-area classification (LAC) research offers a promising avenue to address the intricacies of urban planning, agricultural zoning, and environmental monitoring, with a specific focus on urban areas and their complex land usage patterns. The potential of LAC research is significantly propelled by advancements in high-resolution satellite imagery and machine learning strategies, particularly the use of convolutional neural networks (CNNs). Accurate LAC is paramount for informed urban development and effective land management. Traditional remote-sensing methods encounter limitations in precisely classifying dynamic and complex urban land areas. Therefore, in this study, we investigated the application of transfer learning with Inception-v3 and DenseNet121 architectures to establish a reliable LAC system for identifying urban land use classes. Leveraging transfer learning with these models provided distinct advantages, as it allows the LAC system to benefit from pre-trained features on large datasets, enhancing model generalization and performance compared to starting from scratch. Transfer learning also facilitates the effective utilization of limited labeled data for fine-tuning, making it a valuable strategy for optimizing model accuracy in complex urban land classification tasks. Moreover, we strategically employ fine-tuned versions of Inception-v3 and DenseNet121 networks, emphasizing the transformative impact of these architectures. The fine-tuning process enables the model to leverage pre-existing knowledge from extensive datasets, enhancing its adaptability to the intricacies of LC classification. By aligning with these advanced techniques, our research not only contributes to the evolution of remote-sensing methodologies but also underscores the paramount importance of incorporating cutting-edge methodologies, such as fine-tuning and the use of specific network architectures, in the continual enhancement of LC classification systems. Through experiments conducted on the UC-Merced_LandUse dataset, we demonstrate the effectiveness of our approach, achieving remarkable results, including 92% accuracy, 93% recall, 92% precision, and a 92% F1-score. Moreover, employing heatmap analysis further elucidates the decision-making process of the models, providing insights into the classification mechanism. The successful application of CNNs in LAC, coupled with heatmap analysis, opens promising avenues for enhanced urban planning, agricultural zoning, and environmental monitoring through more accurate and automated land-area classification.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3