Affiliation:
1. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
Abstract
The research aims to examine the distribution of porosity and the combined heat and moisture movement while grains are being dried. This research concerns the porosity and flow of soybeans with different particle size ratios and the drying of soybeans with varying particle temperatures. Due to the similarity in shape between soybeans and balls, this article adopts a ball shape to study the heat and moisture transfer of soybean particles, which can also be used for the study of grains with similar shapes, such as mung beans and red beans. Random models of soybeans with varying proportions were created using modeling software Edem and UG. UDF programming was added to the preprocessing software Fluent to analyze the porosity, airstream allocation, and the interaction of temperature and moisture transfer in packed beds with various cylinder-to-particle size ratios and particle temperatures. A packed bed of soybeans was created, and the study examined the impact of cylinder-to-particle size ratios of 4.44, 5.6, and 6.25 on porosity. The results show that the radial porosity in the packed bed displays a fluctuating profile, with partial porosity increasing as the cylinder-to-particle size ratio increases. Increasing the ratio of cylinder size to particle size exacerbated the tortuosity of the flow paths within the packed bed. Simultaneously, the particle temperature increases, leading to a rise in the instantaneous heat transfer during the drying process, strengthening the ratio of moisture transfer within the packed bed. The method effectively models during convective heat and mass transfer in the liquid facies, as well as thermal and mass spread in the solid facies. The results of this study have been validated on physical models. The air temperature of 273 K is considered during the simulation process
Funder
National Natural Science Foundation of China
University Synergy Innovation Program of Anhui Province
Education Revitalization Project of Anhui Province (CN), China