Effects of Anaerobic Digestates and Biochar Amendments on Soil Health, Greenhouse Gas Emissions, and Microbial Communities: A Mesocosm Study

Author:

Pastorelli Roberta1ORCID,Casagli Alessandro1,Rocchi Filippo1,Tampio Elina2ORCID,Laaksonen Ilmari3,Becagli Claudia1,Lagomarsino Alessandra1

Affiliation:

1. Research Centre for Agriculture and Environment, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA-AA), Via di Lanciola 12/A, 50125 Firenze, Italy

2. Natural Resources Institute Finland (Luke), Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland

3. Natural Resources Institute Finland (Luke), Production Systems, Tietotie 4, 31600 Jokionen, Finland

Abstract

This study addresses the need for a comprehensive understanding of digestate and biochar in mitigating climate change and improving soil health, crucial for sustainable agriculture within the circular bioeconomy framework. Through a mesocosm experiment, soil was amended with digestates from pilot-scale reactors and two concentrations of biochar produced by pyrolysis of digested sewage sludge and waste wood. The Germination Index (GI) assay assessed phytotoxicity on Lactuca sativa and Triticum aestivum seeds. Greenhouse gas emissions (CO2, CH4, N2O) measurements, soil characteristics analyses, and the study of microbial community structure enriched the study’s depth. The GI assay revealed diverse responses among by-products, dilution rates, and plant types, highlighting the potential phyto-stimulatory effects of digestate and biochar water-extracts. While digestate proved to be effective as fertilizer, concerns arose regarding microbial contamination. Biochar application reduced Clostridiaceae presence in soil but unexpectedly increased N2O emissions at higher concentrations, emphasizing the need for further research on biochar’s role in mitigating microbial impacts. CO2 emissions increased with digestate application but decreased with a 10% biochar concentration, aligning with control levels. CH4 uptake decreased with digestate and high biochar concentrations. The study underscores the importance of tailored approaches considering biochar composition and dosage to optimize soil greenhouse gas fluxes and microbial communities.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3