Structurally Invariant Higher-Order Ince-Gaussian Beams and Their Expansions into Hermite-Gaussian or Laguerre-Gaussian Beams

Author:

Abramochkin Eugeny G.1ORCID,Kotlyar Victor V.23ORCID,Kovalev Alexey A.23ORCID

Affiliation:

1. Lebedev Physical Institute, 221 Novo-Sadovaya Str., 443011 Samara, Russia

2. Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya Str., 443001 Samara, Russia

3. Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russia

Abstract

Paraxial beam modes, which propagate in space and focus without changing their transverse intensity pattern, are of great value for multiplexing transmitted data in optical communications, both in waveguides and in free space. The best-known paraxial modes are the Hermite-Gaussian and Laguerre-Gaussian beams. Here, we derive explicit analytical expressions for Ince-Gaussian (IG) beams for several first values of the indices p = 3, 4, 5, and 6. In total, we obtain expressions for the amplitudes of 24 IG beams. These formulae are written as superpositions of the Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) beams, with the superposition coefficients explicitly depending on the ellipticity parameter. Due to simultaneous representation of the IG modes via the LG and HG modes, it is easy to obtain the IG modes in the limiting cases wherein the ellipticity parameter is zero or approaches infinity. The explicit dependence of the obtained expressions for the IG modes on the ellipticity parameter makes it possible to change the intensity pattern at the beam cross-section by continuously varying the parameter values. For the first time, the intensity distributions of the IG beams are obtained for negative values of the ellipticity parameter. The obtained expressions could facilitate a theoretical analysis of properties of the IG modes and could find practical applications in the numerical simulation or generation of such beams with a liquid-crystal spatial light modulator.

Funder

RUSSIAN SCIENCE FOUNDATION

STATE ASSIGNMENT of NRC “Kurchatov Institute”

Publisher

MDPI AG

Reference21 articles.

1. Arscott, F.M. (1964). Periodic Differential Equations, Pergamon.

2. XXI—The Whittaker-Hill equation and the wave equation in paraboloidal coordinates;Arscott;Proc. R. Soc. Edinburgh Sect. A,1967

3. Miller, W. (1977). Symmetry and Separation of Variables, Addison-Wesley Pub. Comp.

4. Ince–Gaussian beams;Bandres;Opt. Lett.,2004

5. Ince–Gaussian modes of the paraxial wave equation and stable resonators;Bandres;J. Opt. Soc. Am. A,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3