A Multi-Task Learning and Knowledge Selection Strategy for Environment-Induced Color-Distorted Image Restoration

Author:

Ding Yuan1,Wu Kaijun1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Existing methods for restoring color-distorted images in specific environments typically focus on a singular type of distortion, making it challenging to generalize their application across various types of color-distorted images. If it were possible to leverage the intrinsic connections between different types of color-distorted images and coordinate their interactions during model training, it would simultaneously enhance generalization, address potential overfitting and underfitting issues during data fitting, and consequently lead to a positive performance boost. In this paper, our approach primarily addresses three distinct types of color-distorted images, namely dust-laden images, hazy images, and underwater images. By thoroughly exploiting the unique characteristics and interrelationships of these types, we achieve the objective of multitask processing. Within this endeavor, identifying appropriate correlations is pivotal. To this end, we propose a knowledge selection and allocation strategy that optimally distributes the features and correlations acquired by the network from the images to different tasks, enabling a more refined task differentiation. Moreover, given the challenge of difficult dataset pairing, we employ unsupervised learning techniques and introduce novel Transformer blocks, feedforward networks, and hybrid modules to enhance context relevance. Through extensive experimentation, we demonstrate that our proposed method significantly enhances the performance of color-distorted image restoration.

Funder

Natural Science Foundation Key Project of Gansu Province

Natural Science Foundation of Gansu Province

Gansu Province and the Inner Mongolia Key R&D and Achievement Transformation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3