Augmented Reality Support for Anterior Decompression and Fusion Using Floating Method for Cervical Ossification of the Posterior Longitudinal Ligament

Author:

Onuma Hiroaki1ORCID,Sakai Kenichiro1ORCID,Arai Yoshiyasu1,Torigoe Ichiro1,Tomori Masaki1,Sakaki Kyohei1,Hirai Takashi2ORCID,Egawa Satoru2,Kobayashi Yutaka1,Okawa Atsushi2ORCID,Yoshii Toshitaka2

Affiliation:

1. Department of Orthopedic Surgery, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi-shi 332-8558, Japan

2. Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ward, Tokyo 113-8519, Japan

Abstract

Anterior decompression and fusion (ADF) using the floating method for cervical ossification of the posterior longitudinal ligament (OPLL) is an ideal surgical technique, but it has a specific risk of insufficient decompression caused by the impingement of residual ossification. Augmented reality (AR) support is a novel technology that enables the superimposition of images onto the view of a surgical field. AR technology was applied to ADF for cervical OPLL to facilitate intraoperative anatomical orientation and OPLL identification. In total, 14 patients with cervical OPLL underwent ADF with microscopic AR support. The outline of the OPLL and the bilateral vertebral arteries was marked after intraoperative CT, and the reconstructed 3D image data were transferred and linked to the microscope. The AR microscopic view enabled us to visualize the ossification outline, which could not be seen directly in the surgical field, and allowed sufficient decompression of the ossification. Neurological disturbances were improved in all patients. No cases of serious complications, such as major intraoperative bleeding or reoperation due to the postoperative impingement of the floating OPLL, were registered. To our knowledge, this is the first report of the introduction of microscopic AR into ADF using the floating method for cervical OPLL with favorable clinical results.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3