Enhancing Coordination Efficiency with Fuzzy Monte Carlo Uncertainty Analysis for Dual-Setting Directional Overcurrent Relays Amid Distributed Generation

Author:

Al-Bhadely Faraj1ORCID,İnan Aslan1ORCID

Affiliation:

1. Department of Electrical Engineering, Yildiz Technical University, Istanbul 34220, Turkey

Abstract

In the contemporary context of power network protection, acknowledging uncertainties in safeguarding recent power networks integrated with distributed generation (DG) is imperative to uphold the dependability, security, and efficiency of the grid amid the escalating integration of renewable energy sources and evolving operational conditions. This study delves into the optimization of relay settings within distribution networks, presenting a novel approach aimed at augmenting coordination while accounting for the dynamic presence of DG resources and the uncertainties inherent in their generation outputs and load consumption—factors previously overlooked in existing research. Departing from conventional methodologies, the study proposes a dual-setting characteristic for directional overcurrent relays (DOCRs). Initially, a meticulous modeling of a power network featuring distributed generation is undertaken, integrating Weibull probability functions for each resource to capture their probabilistic behavior. Subsequently, the second stage employs the fuzzy Monte Carlo method to address generation and consumption uncertainties. The optimization conundrum is addressed using the ant lion optimizer (ALO) algorithm in the MATLAB environment. This thorough analysis was conducted on IEEE 14-bus and IEEE 30-bus power distribution systems, showcasing a notable reduction in the total DOCR operating time compared to conventional characteristics. The proposed characteristic not only achieves resilient coordination across a spectrum of uncertainties in both distributed generation outputs and load consumption, but also strengthens the resilience of distribution networks overall.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3