Abstract
The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1−/− mice have been available since the 2000s, TRPV1’s role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1−/− mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1−/− slow-twitch muscles, especially in female animals.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献