Author:
Park Ilhwan,Hong Seunggwan,Jeon Sanghee,Ito Mayumi,Hiroyoshi Naoki
Abstract
Porphyry-type deposits are the major sources of copper and molybdenum, and flotation has been adopted to recover them separately. The conventional reagents used for depressing copper minerals, such as NaHS, Na2S, and Nokes reagent, have the potential to emit toxic H2S gas when pulp pH was not properly controlled. Thus, in this study the applicability of microencapsulation (ME) using ferrous and phosphate ions as an alternative process to depress the floatability of chalcopyrite was investigated. During ME treatment, the use of high concentrations of ferrous and phosphate ions together with air introduction increased the amount of FePO4 coating formed on the chalcopyrite surface, which was proportional to the degree of depression of its floatability. Although ME treatment also reduced the floatability of molybdenite, ~92% Mo could be recovered by utilizing emulsified kerosene. Flotation of chalcopyrite/molybdenite mixture confirmed that the separation efficiency was greatly improved from 10.9% to 66.8% by employing ME treatment as a conditioning process for Cu-Mo flotation separation.
Subject
General Materials Science,Metals and Alloys
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献