Ratcheting-Fatigue Behavior of Harmonic-Structure-Designed SUS316L Stainless Steel

Author:

Song Yang,Zhang Zhe,Ma Hantuo,Nakatani Masashi,Kawabata Mie Ota,Ameyama KeiORCID

Abstract

Stainless steels with harmonic-structure design have a great balance of high strength and high ductility. Therefore, it is imperative to investigate their fatigue properties for engineering applications. In the present work, the harmonic-structured SUS316L stainless steels were fabricated by mechanical milling (MM) and subsequent hot isostatic pressing (HIP) process. A series of ratcheting-fatigue tests were performed on the harmonic-structured SUS316L steels under stress-control mode at room temperature. Effects of grain structure and stress-loading conditions on ratcheting behavior and fatigue life were investigated. Results showed that grain size and applied mean stress had a significant influence on ratcheting-strain accumulation and fatigue life. Owing to the ultrafine grained structure, tensile strength of the harmonic-structured SUS316L steels could be enhanced, which restrained the ratcheting-strain accumulation, resulting in a prolonged fatigue life. A higher mean stress caused a faster ratcheting-strain accumulation, which led to the deterioration of fatigue life. Moreover, a modified model based on Smith–Watson–Topper (SWT) criterion predicted the ratcheting-fatigue life of the harmonic-structured SUS316L steels well. Most of the fatigue-life points were located in the 5 times error band.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3