Achieving Accuracy Improvements for Single-Point Incremental Forming Process Using a Circumferential Hammering Tool

Author:

Nasulea Daniel,Oancea Gheorghe

Abstract

The paper presents a novel solution for improving the accuracy of the wall area of parts manufactured by single point incremental forming. Thus, a forming tool with a special design that works according to the principle of circumferential hammering is deployed, with a direct improving effect of the forming conditions and consequently of the dimensional accuracy of the part. The research is focused on an experimental study of frustum-of-cone shapes manufactured from sheet metal blanks of DC05 deep drawing steel of 1 mm thickness. A typical customary technological setup is used for the single point incremental forming process, without any additional elements, and two forming tools, a hemispherical and a special one, which use the circumferential hammering effect. Several preliminary tests using both tools were performed in order to prove that part accuracy can be significantly improved by using the circumferential hammering tool. The research was further expanded to investigate the influence on part wall dimensional accuracy of three factors: tool spindle speed, tool feed rate and part dimensional configuration. Using a full factorial plan of experiments the results of 32 test runs were processed. All parts were machined adequately, free of any material fracturing. Based on the achieved machining accuracy of the part walls, precision mathematical models were developed for the prediction of part dimensional accuracy in those areas. The mathematical models were validated by practice, as the predicted accuracies were matched by the experimental results.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3