Temperature and Dissolved Oxygen Lead to Behavior and Respiration Changes in Juvenile Largemouth Bass (Micropterus salmoides) during Transport

Author:

Gui Fukun1,Sun Haofeng2ORCID,Qu Xiaoyu3,Niu Shuai1,Zhang Guangyang1,Feng Dejun1ORCID

Affiliation:

1. National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China

2. College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China

3. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

The study aimed to investigate the effects of temperature and dissolved oxygen on juvenile largemouth bass during transportation. The experiment involved four temperature groups: 20, 15, 10, and 5 °C. We analyzed the effects of acute and uniform cooling on fish behavior to determine the optimal approach for cooling. Then, we simulated transport under different temperature conditions while measuring the dissolved oxygen level and metabolic rate until all the fish died. The results showed that acute cooling significantly influenced the tail-beat frequency of fish compared with uniform cooling, while abnormal behaviors such as increased swimming, attempted jumping out of the water, and loss of balance were observed. As the transport temperature reduced, the oxygen consumption rate of fish significantly changed at 10 °C, being 2.6 times lower than at 15 °C, with values of 0.10 ± 0.02 and 0.47 ± 0.07 mg·g−1·h−1, respectively. The critical oxygen threshold (Pcrit) of fish were 1.90 ± 0.12, 1.61 ± 0.04, 1.15 ± 0.09, and 1.12 ± 0.25 mg·L−1 at 5, 10, 15, and 20 °C. In addition, below Pcrit, hypoxia-led behavior changes and oxygen consumption rate reduction were observed at every transport temperature. The findings suggest that the optimal low temperature can reduce metabolism and improve the hypoxia tolerance of juvenile largemouth bass. We recommend transporting largemouth bass at an optimal low temperature (15 °C), monitoring fish behavior, and maintaining oxygen levels above Pcrit during transport to prevent stress.

Funder

“Spearhead”, “Leading Yan” research and development program of Zhejiang Province

National key research and development plan

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3