Spatial Density, Biomass, and Composition of Crustacean Zooplankton on Lake Michigan Beaches

Author:

Johnston Samuel J.12,Smith Jason B.3ORCID,Slater Brady D.12,Doubek Jonathan P.12ORCID

Affiliation:

1. School of Natural Resources, Lake Superior State University, Sault Sainte Marie, MI 49783, USA

2. Center for Freshwater Research and Education, Lake Superior State University, Sault Sainte Marie, MI 49783, USA

3. Sault Ste. Marie Tribe of Chippewa Indians, Sault Sainte Marie, MI 49783, USA

Abstract

Ecosystem alterations to Lake Michigan (LM), such as the invasion of dreissenid mussels, have decreased the abundance of phytoplankton and, subsequently, zooplankton, which has implications for Great Lake fisheries. The community composition of zooplankton has also been altered over the past 20 years in LM, shifting the summer dominance from cladoceran to calanoid taxa. However, most of our information on zooplankton community dynamics is from deeper pelagic zones. The nearshore beach (≤1 m) habitat, which serves as a critical nursery for some larvae and juvenile fish, is composed of different zooplankton taxa than deeper zones, but limited data are available for comparison. We conducted a standardized summer sampling campaign to characterize the zooplankton community across 32 beaches in LM. We found the lowest crustacean zooplankton density and biomass on northern LM beaches and a higher zooplankton density and biomass on Greater Green Bay and central LM beaches, which had warmer water temperatures. Smaller-bodied cladocera (mainly Bosmina) and cyclopoid taxa were the most abundant groups on beaches. Our results provide the first comprehensive characterization of zooplankton on beaches in the Great Lakes, with applications for other lake systems. These results may help identify potential “hot spots” of fish recruitment for management.

Funder

Undergraduate Environmental Internship

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3